Artwork

Ludwig-Maximilians-Universität München and MCMP Team द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Ludwig-Maximilians-Universität München and MCMP Team या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Player FM - पॉडकास्ट ऐप
Player FM ऐप के साथ ऑफ़लाइन जाएं!

Quantified Probability Logics: How Boolean Algebras Met Real-Closed Fields

51:28
 
साझा करें
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117459 series 2929680
Ludwig-Maximilians-Universität München and MCMP Team द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Ludwig-Maximilians-Universität München and MCMP Team या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Stanislav O. Speranski (Sobolev Institute of Mathematics) gives a talk at the MCMP Colloquium (4 December, 2014) titled "Quantified probability logics: how Boolean algebras met real-closed fields". Abstract: This talk is devoted to one interesting probability logic with quantifiers over events — henceforth denoted by QPL. That is to say, the quantifiers in QPL are intended to range over all events of the probability space at hand. Here I will be concerned with fundamental questions about the expressive power and algorithmic content of QPL. Note that these two aspects are closely connected, and in fact there exists a trade-off between them: whenever a logic has a high computational complexity, we expect some natural higher-order properties to be definable in the corresponding language. For each class of spaces, we introduce its theory, viz. the set of probabilistic sentences true in every space from the class. Then the theory of the class of all spaces turns out to be of a huge complexity, being computably equivalent to the true second-order arithmetic of natural numbers. On the other hand, many important properties of probability spaces — like those of being finite, discrete and atomless — are definable by suitable formulas of our language. Further, for any class of atomless spaces, there exists an algorithm for deciding whether a given probabilistic formula belongs to its theory or not; moreover, this continues to hold even if we extend our formalism by adding quantifiers over reals. To sum up, the proposed logic and its variations, being attractive from the viewpoint of probability theory and having nice algebraic features, prove to be very useful for investigating connections between probability and logic. In the final part of the talk I will compare QPL with other probabilistic languages (including Halpern's first-order logics of probability and Keisler's model-theoretic logics with probability quantifiers), discuss analogies with research in Boolean algebras and show, in particular, how QPL can serve for classification of probability spaces.
  continue reading

22 एपिसोडस

Artwork
iconसाझा करें
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117459 series 2929680
Ludwig-Maximilians-Universität München and MCMP Team द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Ludwig-Maximilians-Universität München and MCMP Team या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Stanislav O. Speranski (Sobolev Institute of Mathematics) gives a talk at the MCMP Colloquium (4 December, 2014) titled "Quantified probability logics: how Boolean algebras met real-closed fields". Abstract: This talk is devoted to one interesting probability logic with quantifiers over events — henceforth denoted by QPL. That is to say, the quantifiers in QPL are intended to range over all events of the probability space at hand. Here I will be concerned with fundamental questions about the expressive power and algorithmic content of QPL. Note that these two aspects are closely connected, and in fact there exists a trade-off between them: whenever a logic has a high computational complexity, we expect some natural higher-order properties to be definable in the corresponding language. For each class of spaces, we introduce its theory, viz. the set of probabilistic sentences true in every space from the class. Then the theory of the class of all spaces turns out to be of a huge complexity, being computably equivalent to the true second-order arithmetic of natural numbers. On the other hand, many important properties of probability spaces — like those of being finite, discrete and atomless — are definable by suitable formulas of our language. Further, for any class of atomless spaces, there exists an algorithm for deciding whether a given probabilistic formula belongs to its theory or not; moreover, this continues to hold even if we extend our formalism by adding quantifiers over reals. To sum up, the proposed logic and its variations, being attractive from the viewpoint of probability theory and having nice algebraic features, prove to be very useful for investigating connections between probability and logic. In the final part of the talk I will compare QPL with other probabilistic languages (including Halpern's first-order logics of probability and Keisler's model-theoretic logics with probability quantifiers), discuss analogies with research in Boolean algebras and show, in particular, how QPL can serve for classification of probability spaces.
  continue reading

22 एपिसोडस

सभी एपिसोड

×
 
Loading …

प्लेयर एफएम में आपका स्वागत है!

प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।

 

त्वरित संदर्भ मार्गदर्शिका