Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
The Thesis Review and Sean Welleck द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Thesis Review and Sean Welleck या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal।
Player FM - पॉडकास्ट ऐप
Player FM ऐप के साथ ऑफ़लाइन जाएं!
Player FM ऐप के साथ ऑफ़लाइन जाएं!
[23] Simon Du - Gradient Descent for Non-convex Problems in Modern Machine Learning
MP3•एपिसोड होम
Manage episode 302418422 series 2982803
The Thesis Review and Sean Welleck द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Thesis Review and Sean Welleck या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal।
Simon Shaolei Du is an Assistant Professor at the University of Washington. His research focuses on theoretical foundations of deep learning, representation learning, and reinforcement learning. Simon's PhD thesis is titled "Gradient Descent for Non-convex Problems in Modern Machine Learning", which he completed in 2019 at Carnegie Mellon University. We discuss his work related to the theory of gradient descent for challenging non-convex problems that we encounter in deep learning. We cover various topics including connections with the Neural Tangent Kernel, theory vs. practice, and future research directions. Episode notes: https://cs.nyu.edu/~welleck/episode23.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
…
continue reading
49 एपिसोडस
MP3•एपिसोड होम
Manage episode 302418422 series 2982803
The Thesis Review and Sean Welleck द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Thesis Review and Sean Welleck या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal।
Simon Shaolei Du is an Assistant Professor at the University of Washington. His research focuses on theoretical foundations of deep learning, representation learning, and reinforcement learning. Simon's PhD thesis is titled "Gradient Descent for Non-convex Problems in Modern Machine Learning", which he completed in 2019 at Carnegie Mellon University. We discuss his work related to the theory of gradient descent for challenging non-convex problems that we encounter in deep learning. We cover various topics including connections with the Neural Tangent Kernel, theory vs. practice, and future research directions. Episode notes: https://cs.nyu.edu/~welleck/episode23.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
…
continue reading
49 एपिसोडस
सभी एपिसोड
×प्लेयर एफएम में आपका स्वागत है!
प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।