Artwork

The Data Flowcast द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Data Flowcast या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Player FM - पॉडकास्ट ऐप
Player FM ऐप के साथ ऑफ़लाइन जाएं!

Scaling On-Prem Airflow With 2,000 DAGs at Numberly with Sébastien Crocquevieille

24:17
 
साझा करें
 

Manage episode 501484241 series 2948506
The Data Flowcast द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Data Flowcast या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal

Scaling 2,000+ data pipelines isn’t easy. But with the right tools and a self-hosted mindset, it becomes achievable.

In this episode, Sébastien Crocquevieille, Data Engineer at Numberly, unpacks how the team scaled their on-prem Airflow setup using open-source tooling and Kubernetes. We explore orchestration strategies, UI-driven stakeholder access and Airflow’s evolving features.

Key Takeaways:

00:00 Introduction.

02:13 Overview of the company’s operations and global presence.

04:00 The tech stack and structure of the data engineering team.

04:24 Running nearly 2,000 DAGs in production using Airflow.

05:42 How Airflow’s UI empowers stakeholders to self-serve and troubleshoot.

07:05 Details on the Kubernetes-based Airflow setup using Helm charts.

09:31 Transition from GitSync to NFS for DAG syncing due to performance issues.

14:11 Making every team member Airflow-literate through local installation.

17:56 Using custom libraries and plugins to extend Airflow functionality.

Resources Mentioned:

Sébastien Crocquevieille

https://www.linkedin.com/in/scroc/

Numberly | LinkedIn

https://www.linkedin.com/company/numberly/

Numberly | Website

https://numberly.com/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/

Apache Kafka

https://kafka.apache.org/

Helm Chart for Apache Airflow

https://airflow.apache.org/docs/helm-chart/stable/index.html

Kubernetes

https://kubernetes.io/

GitLab

https://about.gitlab.com/

KubernetesPodOperator – Airflow

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

81 एपिसोडस

Artwork
iconसाझा करें
 
Manage episode 501484241 series 2948506
The Data Flowcast द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Data Flowcast या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal

Scaling 2,000+ data pipelines isn’t easy. But with the right tools and a self-hosted mindset, it becomes achievable.

In this episode, Sébastien Crocquevieille, Data Engineer at Numberly, unpacks how the team scaled their on-prem Airflow setup using open-source tooling and Kubernetes. We explore orchestration strategies, UI-driven stakeholder access and Airflow’s evolving features.

Key Takeaways:

00:00 Introduction.

02:13 Overview of the company’s operations and global presence.

04:00 The tech stack and structure of the data engineering team.

04:24 Running nearly 2,000 DAGs in production using Airflow.

05:42 How Airflow’s UI empowers stakeholders to self-serve and troubleshoot.

07:05 Details on the Kubernetes-based Airflow setup using Helm charts.

09:31 Transition from GitSync to NFS for DAG syncing due to performance issues.

14:11 Making every team member Airflow-literate through local installation.

17:56 Using custom libraries and plugins to extend Airflow functionality.

Resources Mentioned:

Sébastien Crocquevieille

https://www.linkedin.com/in/scroc/

Numberly | LinkedIn

https://www.linkedin.com/company/numberly/

Numberly | Website

https://numberly.com/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/

Apache Kafka

https://kafka.apache.org/

Helm Chart for Apache Airflow

https://airflow.apache.org/docs/helm-chart/stable/index.html

Kubernetes

https://kubernetes.io/

GitLab

https://about.gitlab.com/

KubernetesPodOperator – Airflow

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

81 एपिसोडस

सभी एपिसोड

×
 
Loading …

प्लेयर एफएम में आपका स्वागत है!

प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।

 

त्वरित संदर्भ मार्गदर्शिका

अन्वेषण करते समय इस शो को सुनें
प्ले