Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
The Data Flowcast द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Data Flowcast या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal।
Player FM - पॉडकास्ट ऐप
Player FM ऐप के साथ ऑफ़लाइन जाएं!
Player FM ऐप के साथ ऑफ़लाइन जाएं!
The Power of Airflow in Modern Data Environments at Wynn Las Vegas with Siva Krishna Yetukuri
MP3•एपिसोड होम
Manage episode 421002921 series 2948506
The Data Flowcast द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Data Flowcast या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal।
Understanding the critical role of data integration and management is essential for driving business success, particularly in a dynamic environment like a luxury casino resort. In this episode, we sit down with Siva Krishna Yetukuri, Cloud Data Architect at Wynn Las Vegas, to explore how Airflow and other tools are transforming data workflows and customer experiences at Wynn Las Vegas. Key Takeaways: (02:00) Siva designs and builds cutting-edge data pipelines and architectures. (02:54) Wynn is building a data platform to drive surveys and marketing strategies. (05:00) Airflow is the backbone of data ingestion, curation and integration. (07:00) Custom operators in Airflow enhance monitoring and reporting. (09:00) Excitement surrounds the use of Airflow 2.9 and its new features. (08:32) A metadata database drives Airflow workflows and captures metrics. (12:31) Understanding Airflow fundamentals in layman’s terms simplifies complexity. (16:33) Transitioning from Control-M to Airflow eases building complex workflows. (24:06) ML models for volume and freshness anomalies improve data quality. (20:15) DAGs are often auto-generated, simplifying the process for engineers. Resources Mentioned: Apache Airflow - https://airflow.apache.org/ Snowflake - https://www.snowflake.com/ Databricks - https://databricks.com/ Great Expectations - https://greatexpectations.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #ai #automation #airflow #machinelearning
…
continue reading
37 एपिसोडस
The Power of Airflow in Modern Data Environments at Wynn Las Vegas with Siva Krishna Yetukuri
The Data Flowcast: Mastering Airflow for Data Engineering & AI
MP3•एपिसोड होम
Manage episode 421002921 series 2948506
The Data Flowcast द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री The Data Flowcast या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal।
Understanding the critical role of data integration and management is essential for driving business success, particularly in a dynamic environment like a luxury casino resort. In this episode, we sit down with Siva Krishna Yetukuri, Cloud Data Architect at Wynn Las Vegas, to explore how Airflow and other tools are transforming data workflows and customer experiences at Wynn Las Vegas. Key Takeaways: (02:00) Siva designs and builds cutting-edge data pipelines and architectures. (02:54) Wynn is building a data platform to drive surveys and marketing strategies. (05:00) Airflow is the backbone of data ingestion, curation and integration. (07:00) Custom operators in Airflow enhance monitoring and reporting. (09:00) Excitement surrounds the use of Airflow 2.9 and its new features. (08:32) A metadata database drives Airflow workflows and captures metrics. (12:31) Understanding Airflow fundamentals in layman’s terms simplifies complexity. (16:33) Transitioning from Control-M to Airflow eases building complex workflows. (24:06) ML models for volume and freshness anomalies improve data quality. (20:15) DAGs are often auto-generated, simplifying the process for engineers. Resources Mentioned: Apache Airflow - https://airflow.apache.org/ Snowflake - https://www.snowflake.com/ Databricks - https://databricks.com/ Great Expectations - https://greatexpectations.io/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #ai #automation #airflow #machinelearning
…
continue reading
37 एपिसोडस
सभी एपिसोड
×प्लेयर एफएम में आपका स्वागत है!
प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।