Artwork

Денис, Ігор, Саша द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Денис, Ігор, Саша या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Player FM - पॉडकास्ट ऐप
Player FM ऐप के साथ ऑफ़लाइन जाएं!

№41: Рекомендаційні системи, ч.1. CTO про побудову рекомендаційних систем, їх складові і оцінку якості.

57:29
 
साझा करें
 

Manage episode 364374416 series 3361795
Денис, Ігор, Саша द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Денис, Ігор, Саша या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal

В гостях Дмитро Войтех, СТО @ S-PRO

🔞 Тут будуть матюки 🔞

Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠

  • 0:00-0:30 Інтро
  • 0:30 - 1:18 — рекомендаційна система для банок на донати - поповнюйте рахунки Повернись Живим
  • 1:19 - 5:45 — Дмитро (ex-Giphy, CTO@S-PRO) розказує, чому він хороша людина на поговорити про рекомендаційні системи
  • 5:46 - 8:10 — чутки про те, в який ML/AI хочуть вкладати гроші європейські компанії
  • 8:10 - 11:43 — визначимо проблему рекомендацій, говоримо про задачу отримання інформації (information retrieval)
  • 11:44 - 12:20 — чому задачу рекомендацій варто розбивати на підсистеми
  • 12:21 - 17:15 — candidate generation – бази даних, векторні індекси, текстові індекси
  • 17:16 - 19:20 — що таке precision та recall, скільки потрібно сіньйорів…
  • 19:21 - 22:20 — чому фільтрувати кандидатів в рекомендації є хорошою ідеєю
  • 22:21 - 30:50 — на чому тренувати рекомендаційну систему: не забудьте полайкати наш подкаст на вашій улюбленій платформі!
  • 30:51 - 40:45 – для чого потрібні офлайн та онлайн метрики; роздумуємо про інтуїцію метрик для оцінки якості рекомендацій
  • 40:46 - 46:50 — чому Mean Reciprocal Rank (MRR) — ймовірно, не найкращий вибір для метрики, говоримо про Expected Reciprocal Rank (ERR) — чому структура гріда рекомендацій має значення
  • 46:51 - 47:45 – Click Through Rate (CTR)
  • 47:46 - 49:55 — говоримо про customer satisfaction та функції втрат для тренування рекомендаційної системи
  • 49:56 - 55:28 — проблема feedback loop, exploration vs exploitation, рандомізуємо рекомендації; багаторукі бандити
  • 55:29 - 57:28 — робимо паузу; оутро і канал 'Kyiv Data Science’; чекайте продовження в наступному випуску!

Долучайтесь до наших соцмереж:

Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

  continue reading

47 एपिसोडस

Artwork
iconसाझा करें
 
Manage episode 364374416 series 3361795
Денис, Ігор, Саша द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Денис, Ігор, Саша या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal

В гостях Дмитро Войтех, СТО @ S-PRO

🔞 Тут будуть матюки 🔞

Робочі посилання і коментарі в каналі ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://t.me/midnight_chatter⁠

  • 0:00-0:30 Інтро
  • 0:30 - 1:18 — рекомендаційна система для банок на донати - поповнюйте рахунки Повернись Живим
  • 1:19 - 5:45 — Дмитро (ex-Giphy, CTO@S-PRO) розказує, чому він хороша людина на поговорити про рекомендаційні системи
  • 5:46 - 8:10 — чутки про те, в який ML/AI хочуть вкладати гроші європейські компанії
  • 8:10 - 11:43 — визначимо проблему рекомендацій, говоримо про задачу отримання інформації (information retrieval)
  • 11:44 - 12:20 — чому задачу рекомендацій варто розбивати на підсистеми
  • 12:21 - 17:15 — candidate generation – бази даних, векторні індекси, текстові індекси
  • 17:16 - 19:20 — що таке precision та recall, скільки потрібно сіньйорів…
  • 19:21 - 22:20 — чому фільтрувати кандидатів в рекомендації є хорошою ідеєю
  • 22:21 - 30:50 — на чому тренувати рекомендаційну систему: не забудьте полайкати наш подкаст на вашій улюбленій платформі!
  • 30:51 - 40:45 – для чого потрібні офлайн та онлайн метрики; роздумуємо про інтуїцію метрик для оцінки якості рекомендацій
  • 40:46 - 46:50 — чому Mean Reciprocal Rank (MRR) — ймовірно, не найкращий вибір для метрики, говоримо про Expected Reciprocal Rank (ERR) — чому структура гріда рекомендацій має значення
  • 46:51 - 47:45 – Click Through Rate (CTR)
  • 47:46 - 49:55 — говоримо про customer satisfaction та функції втрат для тренування рекомендаційної системи
  • 49:56 - 55:28 — проблема feedback loop, exploration vs exploitation, рандомізуємо рекомендації; багаторукі бандити
  • 55:29 - 57:28 — робимо паузу; оутро і канал 'Kyiv Data Science’; чекайте продовження в наступному випуску!

Долучайтесь до наших соцмереж:

Музика: ⁠⁠⁠⁠⁠⁠⁠⁠⁠https://www.streambeats.com/⁠⁠⁠⁠⁠⁠⁠⁠⁠ | ⁠⁠⁠⁠⁠⁠⁠⁠⁠@stasgavrylov

  continue reading

47 एपिसोडस

सभी एपिसोड

×
 
Loading …

प्लेयर एफएम में आपका स्वागत है!

प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।

 

त्वरित संदर्भ मार्गदर्शिका