Player FM ऐप के साथ ऑफ़लाइन जाएं!
The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes
Manage episode 355037190 series 3446693
We discuss the Information Retrieval publication "The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes" by Nils Reimers and Iryna Gurevych, which explores how Dense Passage Retrieval performance degrades as the index size varies and how it compares to traditional sparse or keyword-based methods.
Timestamps:
00:00 Co-host introduction
00:26 Paper introduction
02:18 Dense vs. Sparse retrieval
05:46 Theoretical analysis of false positives(1)
08:17 What is low vs. high dimensional representations
11:49 Theoretical analysis o false positives (2)
20:10 First results: growing the MS-Marco index
28:35 Adding random strings to the index
39:17 Discussion, takeaways
44:26 Will dense retrieval replace or coexist with sparse methods?
50:50 Sparse, Dense and Attentional Representations for Text Retrieval
Referenced work:
Sparse, Dense and Attentional Representations for Text Retrieval by Yi Luan et al. 2020.
21 एपिसोडस
Manage episode 355037190 series 3446693
We discuss the Information Retrieval publication "The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes" by Nils Reimers and Iryna Gurevych, which explores how Dense Passage Retrieval performance degrades as the index size varies and how it compares to traditional sparse or keyword-based methods.
Timestamps:
00:00 Co-host introduction
00:26 Paper introduction
02:18 Dense vs. Sparse retrieval
05:46 Theoretical analysis of false positives(1)
08:17 What is low vs. high dimensional representations
11:49 Theoretical analysis o false positives (2)
20:10 First results: growing the MS-Marco index
28:35 Adding random strings to the index
39:17 Discussion, takeaways
44:26 Will dense retrieval replace or coexist with sparse methods?
50:50 Sparse, Dense and Attentional Representations for Text Retrieval
Referenced work:
Sparse, Dense and Attentional Representations for Text Retrieval by Yi Luan et al. 2020.
21 एपिसोडस
Alle episoder
×प्लेयर एफएम में आपका स्वागत है!
प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।