Artwork

Machine Learning Street Talk (MLST) द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Machine Learning Street Talk (MLST) या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Player FM - पॉडकास्ट ऐप
Player FM ऐप के साथ ऑफ़लाइन जाएं!

Bold AI Predictions From Cohere Co-founder

47:17
 
साझा करें
 

Manage episode 444524539 series 2803422
Machine Learning Street Talk (MLST) द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Machine Learning Street Talk (MLST) या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal

Ivan Zhang, co-founder of Cohere, discusses the company's enterprise-focused AI solutions. He explains Cohere's early emphasis on embedding technology and training models for secure environments.

Zhang highlights their implementation of Retrieval-Augmented Generation in healthcare, significantly reducing doctor preparation time. He explores the shift from monolithic AI models to heterogeneous systems and the importance of improving various AI system components. Zhang shares insights on using synthetic data to teach models reasoning, the democratization of software development through AI, and how his gaming skills transfer to running an AI company.

He advises young developers to fully embrace AI technologies and offers perspectives on AI reliability, potential risks, and future model architectures.

https://cohere.com/

https://ivanzhang.ca/

https://x.com/1vnzh

TOC:

00:00:00 Intro

00:03:20 AI & Language Model Evolution

00:06:09 Future AI Apps & Development

00:09:29 Impact on Software Dev Practices

00:13:03 Philosophical & Societal Implications

00:16:30 Compute Efficiency & RAG

00:20:39 Adoption Challenges & Solutions

00:22:30 GPU Optimization & Kubernetes Limits

00:24:16 Cohere's Implementation Approach

00:28:13 Gaming's Professional Influence

00:34:45 Transformer Optimizations

00:36:45 Future Models & System-Level Focus

00:39:20 Inference-Time Computation & Reasoning

00:42:05 Capturing Human Thought in AI

00:43:15 Research, Hiring & Developer Advice

REFS:

00:02:31 Cohere, https://cohere.com/

00:02:40 The Transformer architecture, https://arxiv.org/abs/1706.03762

00:03:22 The Innovator's Dilemma, https://www.amazon.com/Innovators-Dilemma-Technologies-Management-Innovation/dp/1633691780

00:09:15 The actor model, https://en.wikipedia.org/wiki/Actor_model

00:14:35 John Searle's Chinese Room Argument, https://plato.stanford.edu/entries/chinese-room/

00:18:00 Retrieval-Augmented Generation, https://arxiv.org/abs/2005.11401

00:18:40 Retrieval-Augmented Generation, https://docs.cohere.com/v2/docs/retrieval-augmented-generation-rag

00:35:39 Let’s Verify Step by Step, https://arxiv.org/pdf/2305.20050

00:39:20 Adaptive Inference-Time Compute, https://arxiv.org/abs/2410.02725

00:43:20 Ryan Greenblatt ARC entry, https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt

Disclaimer: This show is part of our Cohere partnership series

  continue reading

197 एपिसोडस

Artwork
iconसाझा करें
 
Manage episode 444524539 series 2803422
Machine Learning Street Talk (MLST) द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Machine Learning Street Talk (MLST) या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal

Ivan Zhang, co-founder of Cohere, discusses the company's enterprise-focused AI solutions. He explains Cohere's early emphasis on embedding technology and training models for secure environments.

Zhang highlights their implementation of Retrieval-Augmented Generation in healthcare, significantly reducing doctor preparation time. He explores the shift from monolithic AI models to heterogeneous systems and the importance of improving various AI system components. Zhang shares insights on using synthetic data to teach models reasoning, the democratization of software development through AI, and how his gaming skills transfer to running an AI company.

He advises young developers to fully embrace AI technologies and offers perspectives on AI reliability, potential risks, and future model architectures.

https://cohere.com/

https://ivanzhang.ca/

https://x.com/1vnzh

TOC:

00:00:00 Intro

00:03:20 AI & Language Model Evolution

00:06:09 Future AI Apps & Development

00:09:29 Impact on Software Dev Practices

00:13:03 Philosophical & Societal Implications

00:16:30 Compute Efficiency & RAG

00:20:39 Adoption Challenges & Solutions

00:22:30 GPU Optimization & Kubernetes Limits

00:24:16 Cohere's Implementation Approach

00:28:13 Gaming's Professional Influence

00:34:45 Transformer Optimizations

00:36:45 Future Models & System-Level Focus

00:39:20 Inference-Time Computation & Reasoning

00:42:05 Capturing Human Thought in AI

00:43:15 Research, Hiring & Developer Advice

REFS:

00:02:31 Cohere, https://cohere.com/

00:02:40 The Transformer architecture, https://arxiv.org/abs/1706.03762

00:03:22 The Innovator's Dilemma, https://www.amazon.com/Innovators-Dilemma-Technologies-Management-Innovation/dp/1633691780

00:09:15 The actor model, https://en.wikipedia.org/wiki/Actor_model

00:14:35 John Searle's Chinese Room Argument, https://plato.stanford.edu/entries/chinese-room/

00:18:00 Retrieval-Augmented Generation, https://arxiv.org/abs/2005.11401

00:18:40 Retrieval-Augmented Generation, https://docs.cohere.com/v2/docs/retrieval-augmented-generation-rag

00:35:39 Let’s Verify Step by Step, https://arxiv.org/pdf/2305.20050

00:39:20 Adaptive Inference-Time Compute, https://arxiv.org/abs/2410.02725

00:43:20 Ryan Greenblatt ARC entry, https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt

Disclaimer: This show is part of our Cohere partnership series

  continue reading

197 एपिसोडस

所有剧集

×
 
Loading …

प्लेयर एफएम में आपका स्वागत है!

प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।

 

त्वरित संदर्भ मार्गदर्शिका

अन्वेषण करते समय इस शो को सुनें
प्ले