Player FM ऐप के साथ ऑफ़लाइन जाएं!
28 May 2019
Manage episode 235505181 series 1581590
Jane Ferguson: Hi, everyone. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. It's May 2019, and this is episode 28. So let's see what papers we have in the journal this month.
First up, a paper from Mengyao Yu, Nabila Bouatia-Naji and colleagues from the Inserm Cardiovascular Research Center in Paris, entitled GWAS-Driven Gene-set Analyses, Genetic and Functional Follow-Up Suggest Glis1 as a Susceptibility Gene for Mitral Valve Prolapse.
In this paper, they set out to characterize the genetic contributions to mitral valve prolapse, or MVP, to better understand the biological mechanisms underlying disease. They applied the gene-set enrichment analysis for QWAS tool and the pathway enrichment tool DEPICT to existing GWAS for MVP in a French sample to identify gene sets associated with MVP. They find significant enrichment of genes involved in pathways of relevance to valve biology and enrichment for gene expression in tissues of relevance to cardiovascular disease.
They zeroed in a Glis family zinc finger gene Glis1 with consistently strong pattern of evidence across the GWAS enrichment and transcription analyses. They replicated the association between Glis1 and MVP in a UK biobank sample. They found that Glis1 is expressed in valvular cells during embryonic development in mice, but is mostly absent at later times. They targeted two Glis1 orthologs in zebrafish and found that knockdown of Glis1 B was associated with a significant increase in the incidence of severe atrioventricular regurgitation. These data highlight Glis1 as a potential regulator of cardiac valve development with relevance for risk of mitral valve prolapse.
Next up is a paper from Gina Peloso, Akihiro Namuro, Sek Kathiresan and colleagues from Boston University, Kanazawa University, and Mass General Hospital. In their paper, Rare Protein Truncating Variance in APOB, Lower LDL-C, and Protection Against Coronary Heart Disease, the team was interested in understanding whether protein truncating variance in APOB underlying familial hypobetalipoproteinemia confer any protection against coronary heart disease.
They sequenced the APOB gene in 29 Japanese families with hypobetalipoproteinemia as well as in over 57,000 individuals, some with early onset CHD and some without CHD. They found that presence of an APOB truncating variant was associated with lower LDL cholesterol and lower triglycerides, and also with significantly lower risk for coronary heart disease. This study confirms that variance in APOB, leading to reduced LDL and triglycerides are also protective against coronary heart disease.
: The next paper entitled Mortality Risk Associated with Truncating Founder Mutations in Titin comes to us from Mark Jansen, Dennis Dooijes, and colleagues from University Medical Center Utrecht. They analyzed the effect of titin truncating variance on mortality in Dutch families. Titin truncating variants are associated with dilated cardiomyopathy, but have a very variable penetrance.
In this study, the authors looked at three titin truncating variants, established to be founder mutations, and traced the pedigrees back to 18th century ancestors. They looked at 61 individuals on the transmission line and 360 of their first-degree relatives. They find no evidence for excess mortality in variant carriers overall. However, when they restrict it to individuals over 60 years of age, they did find a significant difference in mortality, which was also observed in individuals born after 1965. What these data tell us is that these titin truncating variants have a relatively mild phenotype with effects on mortality only manifesting later in life in many carriers. Given increases in life expectancy over the past several decades, the prevalence of morbidity and mortality attributable to titin truncating variants may increase. Genetic screening may identify genotype-positive, phenotype-negative individuals who would benefit from preventative interventions.
Continuing on the theme of genetic variance, we have a paper from John Giudicessi, Michael Ackerman, and colleagues from the Mayo Clinic, Assessment and Validation of a Phenotype-Enhanced Variant Classification Framework to Promote or Demote RYR2 Missense Variants of Uncertain Significance. In this paper, they aim to find a better way to classify variants of unknown significance, of VUS, in the RYR2 gene. Variants in this gene are commonly associated with catecholaminergic polymorphic ventricular tachycardia, or CPVT.
They examined 72 distinct variants in 84 Mayo Clinic cases and find that 48% were classified as VUS under ACMG guidelines. The rate was similar in a second sample from the Netherlands, with 42% of variants originally classified as VUS. They developed a diagnostic scorecard to incorporate a pretest clinical probability of CPVT, which included various clinical criteria, including symptoms and stress test results. Application of the phenotype enhanced ACMG criteria brought the VUS rate down to 7% in Mayo Clinic and 9% in the Dutch samples. The majority of VUS were reclassified as likely pathogenic.
This study highlights how incorporation of disease-specific phenotype information can help to improve variant classification and reduce the ambiguity of reporting variants of unknown significance.
We also have a number of research letters in the journal this month. From Karine Ngoyen, Gilbert Habib, and coauthors from Marseilles, we have a paper entitled Whole Exome Sequencing Reveals a Large Genetic Heterogeneity and Revisits the Causes of Hypertrophic Cardiomyopathy, Experience of a Multicentric study of 200 French Patients. In this study, they examined the genetic contributions to hypertrophic cardiomyopathy, or HCM, in 200 individuals as part of the HYPERGEN study and compared the benefits of whole exome sequencing compared with targeted sequencing of candidates' sarcomeric genes. All subjects had HCM documented by echocardiography.
In the whole exome sequencing data, they first looked for mutations within 167 genes known to be involved in cardiomyopathies or other hereditary diseases. Of these 167 virtual panel genes, they find variants in 101 genes. Following whole exome sequencing, over 87% of the patients had an identified pathogenic, or likely pathogenic, mutation compared with only 35% of patients who only had targeted sequencing of sarcomeric genes.
This highlights the generic heterogeneity of HCM and suggests that whole exome sequencing has utility in identifying variants not covered by sarcomeric gene panels.
The next letter is from Wouter Te Rijdt, Martin [Vandenberg] and colleagues from University Medical Center Groningen and states that [dissynchronopathy] can be a manifestation of heritable cardiomyopathy. They hypothesized that left bundle branch block, also designated as dissynchronopathy, may be a manifestation of familial cardiomyopathy.
They analyzed patients from a database of cardiac resynchronization therapy and identified super-responders whose left ventricular dysfunction was normalized by therapy. They carried out targeted sequencing in 60 known cardiomyopathy genes in 16 of these super-responder individuals and identified several variants, including a pathogenic variant in troponin T in one individual and variants of unknown significance in nine individuals. Pedigree analysis identified multiple family members with dilated cardiomyopathy.
This study highlights that dissynchronopathy can be a manifestation of DCM, but that affected individuals may still benefit from cardiac resynchronization therapy.
The next letter entitled Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3 comes from Alexandra Dainis, Euan Ashley, and colleagues from Stanford University. They set out to understand whether transcriptome sequencing could improve the diagnostic yield over genome sequencing in patients with hypertrophic cardiomyopathy. In particular, they hypothesized that long-read sequencing would allow for identification of alternative splicing linked to disease variance. They used long-read RNA and DNA sequencing to target the MYBPC3 gene in an individual with severe HCM who carried a putative splice-site altering variant in the gene. They were able to obtain heart tissue for sequencing and included several HCM and control subjects in addition to the patient with the MYBPC3 variant.
They identified several novel isoforms that were only present in the patient sample, as well as some additional isoforms, including retained introns, extended exons, and an additional cryptic exon, which would not have been predicted based on the DNA variant. While the effects on protein function is not known, the transcripts are predicted to be translated.
This analysis highlights the effect of a rare variant on transcription of MYBPC3 and provides additional evidence to link the variant to disease. This is a really nice approach, which could be used to probe causality and mechanisms, not only for cardiovascular disease, but for other rare variants in many disease settings.
We finish with a perspective piece from Nosheen Reza, Anjali Owens, and coauthors from the University of Pennsylvania entitled Good Intentions Gone Bad, The Dangers of Sponsored Personalized Genomics. They present a case of a 23-year-old woman who presented for genetic counseling and evaluation after discovering she carried a likely pathogenic MYH7 variant associated with cardiomyopathy. She had no significant medical history, but had participated in employer-sponsored genetic testing motivated to identify potential variants related to cancer given a family history of cancer.
After receiving her results, she experienced considerable anxiety and stopped exercising out of fear of cardiac complications. She visited an ER after experiencing chest pain, something she had not experienced previously. There was no appropriate counseling available at her institution for her genetic test results, leading her to seek out the additional counseling. Thus, while she was initially motivated to complete genetic testing because her employer offered it free of change, she ended up incurring costs related to the followup evaluation and counseling. Ultimately, she had no significant clinical findings. Although the variant had been listed as likely pathogenic, other sources consider it to be of unknown significance.
This story highlights the psychological and financial impact that genetic testing can have on individuals, particularly when carried out without any pretest counseling or accessible post-test support when variants are identified.
Despite the considerable promise of personalized medicine, there are many complexities to be considered, particularly with direct-to-consumer testing and employer-sponsored testing. This perspective highlights the ethical considerations and urges caution to maintain the best interests of patients.
That's all for this month. Thanks for listening. I look forward to bringing you more next month.
This podcast was brought to you by Circulation Genomic and Precision Medicine and the American Heart Association Council on Genomic and Precision Medicine. This program is copyright American Heart Association 2019.
37 एपिसोडस
Manage episode 235505181 series 1581590
Jane Ferguson: Hi, everyone. Welcome to Getting Personal: Omics of the Heart, the podcast from Circulation: Genomic and Precision Medicine. It's May 2019, and this is episode 28. So let's see what papers we have in the journal this month.
First up, a paper from Mengyao Yu, Nabila Bouatia-Naji and colleagues from the Inserm Cardiovascular Research Center in Paris, entitled GWAS-Driven Gene-set Analyses, Genetic and Functional Follow-Up Suggest Glis1 as a Susceptibility Gene for Mitral Valve Prolapse.
In this paper, they set out to characterize the genetic contributions to mitral valve prolapse, or MVP, to better understand the biological mechanisms underlying disease. They applied the gene-set enrichment analysis for QWAS tool and the pathway enrichment tool DEPICT to existing GWAS for MVP in a French sample to identify gene sets associated with MVP. They find significant enrichment of genes involved in pathways of relevance to valve biology and enrichment for gene expression in tissues of relevance to cardiovascular disease.
They zeroed in a Glis family zinc finger gene Glis1 with consistently strong pattern of evidence across the GWAS enrichment and transcription analyses. They replicated the association between Glis1 and MVP in a UK biobank sample. They found that Glis1 is expressed in valvular cells during embryonic development in mice, but is mostly absent at later times. They targeted two Glis1 orthologs in zebrafish and found that knockdown of Glis1 B was associated with a significant increase in the incidence of severe atrioventricular regurgitation. These data highlight Glis1 as a potential regulator of cardiac valve development with relevance for risk of mitral valve prolapse.
Next up is a paper from Gina Peloso, Akihiro Namuro, Sek Kathiresan and colleagues from Boston University, Kanazawa University, and Mass General Hospital. In their paper, Rare Protein Truncating Variance in APOB, Lower LDL-C, and Protection Against Coronary Heart Disease, the team was interested in understanding whether protein truncating variance in APOB underlying familial hypobetalipoproteinemia confer any protection against coronary heart disease.
They sequenced the APOB gene in 29 Japanese families with hypobetalipoproteinemia as well as in over 57,000 individuals, some with early onset CHD and some without CHD. They found that presence of an APOB truncating variant was associated with lower LDL cholesterol and lower triglycerides, and also with significantly lower risk for coronary heart disease. This study confirms that variance in APOB, leading to reduced LDL and triglycerides are also protective against coronary heart disease.
: The next paper entitled Mortality Risk Associated with Truncating Founder Mutations in Titin comes to us from Mark Jansen, Dennis Dooijes, and colleagues from University Medical Center Utrecht. They analyzed the effect of titin truncating variance on mortality in Dutch families. Titin truncating variants are associated with dilated cardiomyopathy, but have a very variable penetrance.
In this study, the authors looked at three titin truncating variants, established to be founder mutations, and traced the pedigrees back to 18th century ancestors. They looked at 61 individuals on the transmission line and 360 of their first-degree relatives. They find no evidence for excess mortality in variant carriers overall. However, when they restrict it to individuals over 60 years of age, they did find a significant difference in mortality, which was also observed in individuals born after 1965. What these data tell us is that these titin truncating variants have a relatively mild phenotype with effects on mortality only manifesting later in life in many carriers. Given increases in life expectancy over the past several decades, the prevalence of morbidity and mortality attributable to titin truncating variants may increase. Genetic screening may identify genotype-positive, phenotype-negative individuals who would benefit from preventative interventions.
Continuing on the theme of genetic variance, we have a paper from John Giudicessi, Michael Ackerman, and colleagues from the Mayo Clinic, Assessment and Validation of a Phenotype-Enhanced Variant Classification Framework to Promote or Demote RYR2 Missense Variants of Uncertain Significance. In this paper, they aim to find a better way to classify variants of unknown significance, of VUS, in the RYR2 gene. Variants in this gene are commonly associated with catecholaminergic polymorphic ventricular tachycardia, or CPVT.
They examined 72 distinct variants in 84 Mayo Clinic cases and find that 48% were classified as VUS under ACMG guidelines. The rate was similar in a second sample from the Netherlands, with 42% of variants originally classified as VUS. They developed a diagnostic scorecard to incorporate a pretest clinical probability of CPVT, which included various clinical criteria, including symptoms and stress test results. Application of the phenotype enhanced ACMG criteria brought the VUS rate down to 7% in Mayo Clinic and 9% in the Dutch samples. The majority of VUS were reclassified as likely pathogenic.
This study highlights how incorporation of disease-specific phenotype information can help to improve variant classification and reduce the ambiguity of reporting variants of unknown significance.
We also have a number of research letters in the journal this month. From Karine Ngoyen, Gilbert Habib, and coauthors from Marseilles, we have a paper entitled Whole Exome Sequencing Reveals a Large Genetic Heterogeneity and Revisits the Causes of Hypertrophic Cardiomyopathy, Experience of a Multicentric study of 200 French Patients. In this study, they examined the genetic contributions to hypertrophic cardiomyopathy, or HCM, in 200 individuals as part of the HYPERGEN study and compared the benefits of whole exome sequencing compared with targeted sequencing of candidates' sarcomeric genes. All subjects had HCM documented by echocardiography.
In the whole exome sequencing data, they first looked for mutations within 167 genes known to be involved in cardiomyopathies or other hereditary diseases. Of these 167 virtual panel genes, they find variants in 101 genes. Following whole exome sequencing, over 87% of the patients had an identified pathogenic, or likely pathogenic, mutation compared with only 35% of patients who only had targeted sequencing of sarcomeric genes.
This highlights the generic heterogeneity of HCM and suggests that whole exome sequencing has utility in identifying variants not covered by sarcomeric gene panels.
The next letter is from Wouter Te Rijdt, Martin [Vandenberg] and colleagues from University Medical Center Groningen and states that [dissynchronopathy] can be a manifestation of heritable cardiomyopathy. They hypothesized that left bundle branch block, also designated as dissynchronopathy, may be a manifestation of familial cardiomyopathy.
They analyzed patients from a database of cardiac resynchronization therapy and identified super-responders whose left ventricular dysfunction was normalized by therapy. They carried out targeted sequencing in 60 known cardiomyopathy genes in 16 of these super-responder individuals and identified several variants, including a pathogenic variant in troponin T in one individual and variants of unknown significance in nine individuals. Pedigree analysis identified multiple family members with dilated cardiomyopathy.
This study highlights that dissynchronopathy can be a manifestation of DCM, but that affected individuals may still benefit from cardiac resynchronization therapy.
The next letter entitled Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3 comes from Alexandra Dainis, Euan Ashley, and colleagues from Stanford University. They set out to understand whether transcriptome sequencing could improve the diagnostic yield over genome sequencing in patients with hypertrophic cardiomyopathy. In particular, they hypothesized that long-read sequencing would allow for identification of alternative splicing linked to disease variance. They used long-read RNA and DNA sequencing to target the MYBPC3 gene in an individual with severe HCM who carried a putative splice-site altering variant in the gene. They were able to obtain heart tissue for sequencing and included several HCM and control subjects in addition to the patient with the MYBPC3 variant.
They identified several novel isoforms that were only present in the patient sample, as well as some additional isoforms, including retained introns, extended exons, and an additional cryptic exon, which would not have been predicted based on the DNA variant. While the effects on protein function is not known, the transcripts are predicted to be translated.
This analysis highlights the effect of a rare variant on transcription of MYBPC3 and provides additional evidence to link the variant to disease. This is a really nice approach, which could be used to probe causality and mechanisms, not only for cardiovascular disease, but for other rare variants in many disease settings.
We finish with a perspective piece from Nosheen Reza, Anjali Owens, and coauthors from the University of Pennsylvania entitled Good Intentions Gone Bad, The Dangers of Sponsored Personalized Genomics. They present a case of a 23-year-old woman who presented for genetic counseling and evaluation after discovering she carried a likely pathogenic MYH7 variant associated with cardiomyopathy. She had no significant medical history, but had participated in employer-sponsored genetic testing motivated to identify potential variants related to cancer given a family history of cancer.
After receiving her results, she experienced considerable anxiety and stopped exercising out of fear of cardiac complications. She visited an ER after experiencing chest pain, something she had not experienced previously. There was no appropriate counseling available at her institution for her genetic test results, leading her to seek out the additional counseling. Thus, while she was initially motivated to complete genetic testing because her employer offered it free of change, she ended up incurring costs related to the followup evaluation and counseling. Ultimately, she had no significant clinical findings. Although the variant had been listed as likely pathogenic, other sources consider it to be of unknown significance.
This story highlights the psychological and financial impact that genetic testing can have on individuals, particularly when carried out without any pretest counseling or accessible post-test support when variants are identified.
Despite the considerable promise of personalized medicine, there are many complexities to be considered, particularly with direct-to-consumer testing and employer-sponsored testing. This perspective highlights the ethical considerations and urges caution to maintain the best interests of patients.
That's all for this month. Thanks for listening. I look forward to bringing you more next month.
This podcast was brought to you by Circulation Genomic and Precision Medicine and the American Heart Association Council on Genomic and Precision Medicine. This program is copyright American Heart Association 2019.
37 एपिसोडस
Alle afleveringen
×प्लेयर एफएम में आपका स्वागत है!
प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।