Player FM ऐप के साथ ऑफ़लाइन जाएं!
Uppsala Reports Long Reads – Weeding out duplicates to better detect side effects
Manage episode 436241633 series 2749727
Duplicate reports are a big problem when it comes to signal detection, but with the help of machine learning and new ways of comparing reports, we may more effectively detect them.
This episode is part of the Uppsala Reports Long Reads series – the most topical stories from UMC’s pharmacovigilance news site, brought to you in audio format. Find the original article here.
After the read, we speak to author Jim Barrett, Senior Data Scientist at UMC, to learn more about the duplicate detection algorithm and UMC’s work to develop AI resources for pharmacovigilance.
Tune in to find out:
- How the new algorithm handles duplicates in VigiBase
- About different approaches for developing algorithms
- Why it can be challenging to evaluate the performance of an algorithm
Want to know more?
- Listen to the Drug Safety Matters interview with Michael Glaser about his Uppsala Reports article “Ensuring trust in AI/ML when used in pharmacovigilance” and check out the episode’s extensive list of links for more on AI in pharmacovigilance.
- Artificial intelligence in pharmacovigilance – value proposition and the need for critical appraisal, a presentation by Niklas Norén, Head of Research at UMC, given at University of Verona in April 2024.
Finally, don’t forget to subscribe to the monthly Uppsala Reports newsletter for free regular updates from the world of pharmacovigilance.
Join the conversation on social media
Follow us on X, LinkedIn, or Facebook and share your thoughts about the show with the hashtag #DrugSafetyMatters.
Got a story to share?
We’re always looking for new content and interesting people to interview. If you have a great idea for a show, get in touch!
About UMC
Read more about Uppsala Monitoring Centre and how we work to advance medicines safety.
अध्यायों
1. Uppsala Reports Long Reads – Weeding out duplicates to better detect side effects (00:00:00)
2. Intro (00:00:09)
3. Article read (00:01:12)
4. Welcome, Jim! (00:05:57)
5. Definitions of AI, machine learning and algorithms (00:07:19)
6. How do we develop algorithms at UMC? (00:08:47)
7. Evaluating the performance of algorithms (00:10:13)
8. How many algorithms has UMC developed? (00:13:09)
9. How many duplicates in VigiBase? (00:13:45)
10. Which duplicate to keep, and which to weed out? (00:15:29)
11. Other examples of algorithms used in pharmacovigilance (00:18:10)
12. Where will we be in a couple of years? (00:20:18)
13. Pitfalls to be mindful of, heading into the future (00:21:47)
14. A dream algorithm? (00:22:32)
15. Thank you and goodbye (00:23:56)
16. Outro (00:24:09)
52 एपिसोडस
Manage episode 436241633 series 2749727
Duplicate reports are a big problem when it comes to signal detection, but with the help of machine learning and new ways of comparing reports, we may more effectively detect them.
This episode is part of the Uppsala Reports Long Reads series – the most topical stories from UMC’s pharmacovigilance news site, brought to you in audio format. Find the original article here.
After the read, we speak to author Jim Barrett, Senior Data Scientist at UMC, to learn more about the duplicate detection algorithm and UMC’s work to develop AI resources for pharmacovigilance.
Tune in to find out:
- How the new algorithm handles duplicates in VigiBase
- About different approaches for developing algorithms
- Why it can be challenging to evaluate the performance of an algorithm
Want to know more?
- Listen to the Drug Safety Matters interview with Michael Glaser about his Uppsala Reports article “Ensuring trust in AI/ML when used in pharmacovigilance” and check out the episode’s extensive list of links for more on AI in pharmacovigilance.
- Artificial intelligence in pharmacovigilance – value proposition and the need for critical appraisal, a presentation by Niklas Norén, Head of Research at UMC, given at University of Verona in April 2024.
Finally, don’t forget to subscribe to the monthly Uppsala Reports newsletter for free regular updates from the world of pharmacovigilance.
Join the conversation on social media
Follow us on X, LinkedIn, or Facebook and share your thoughts about the show with the hashtag #DrugSafetyMatters.
Got a story to share?
We’re always looking for new content and interesting people to interview. If you have a great idea for a show, get in touch!
About UMC
Read more about Uppsala Monitoring Centre and how we work to advance medicines safety.
अध्यायों
1. Uppsala Reports Long Reads – Weeding out duplicates to better detect side effects (00:00:00)
2. Intro (00:00:09)
3. Article read (00:01:12)
4. Welcome, Jim! (00:05:57)
5. Definitions of AI, machine learning and algorithms (00:07:19)
6. How do we develop algorithms at UMC? (00:08:47)
7. Evaluating the performance of algorithms (00:10:13)
8. How many algorithms has UMC developed? (00:13:09)
9. How many duplicates in VigiBase? (00:13:45)
10. Which duplicate to keep, and which to weed out? (00:15:29)
11. Other examples of algorithms used in pharmacovigilance (00:18:10)
12. Where will we be in a couple of years? (00:20:18)
13. Pitfalls to be mindful of, heading into the future (00:21:47)
14. A dream algorithm? (00:22:32)
15. Thank you and goodbye (00:23:56)
16. Outro (00:24:09)
52 एपिसोडस
सभी एपिसोड
×![Artwork](/static/images/128pixel.png)
1 #35 Veterinary pharmacovigilance part 2 – James Mount 41:42
![Artwork](/static/images/128pixel.png)
1 #34 Veterinary pharmacovigilance, Part I – James Mount 47:21
![Artwork](/static/images/128pixel.png)
1 #33 Narrative fields and signal assessors, an exploratory study – Joana Félix and Alem Zekarias 38:43
![Artwork](/static/images/128pixel.png)
1 #32 Pharmacovigilance in older adults – Giovanni Furlan 47:51
![Artwork](/static/images/128pixel.png)
1 #31 A guide to reporting disproportionality analyses – Michele Fusaroli and Daniele Sartori 42:45
![Artwork](/static/images/128pixel.png)
1 Uppsala Reports Long Reads – Weeding out duplicates to better detect side effects 25:02
![Artwork](/static/images/128pixel.png)
1 Uppsala Reports Long Reads – Ensuring trust in AI/ML when used in pharmacovigilance 30:18
![Artwork](/static/images/128pixel.png)
1 #30 Preventing and reporting medication errors – Rabat CC & UMC 33:58
![Artwork](/static/images/128pixel.png)
1 #29 When medicines change our behaviour – Michele Fusaroli 30:30
![Artwork](/static/images/128pixel.png)
1 #28 Catching black swans – François Montastruc 27:21
![Artwork](/static/images/128pixel.png)
1 #27 When drugs damage the liver – Rita Baião 28:30
![Artwork](/static/images/128pixel.png)
1 #26 What's trending in pharmacovigilance? – Angela Caro 28:06
![Artwork](/static/images/128pixel.png)
1 #25 A week in the name of medicines safety – part 2 33:13
![Artwork](/static/images/128pixel.png)
1 #24 A week in the name of medicines safety – part 1 27:09
![Artwork](/static/images/128pixel.png)
1 Uppsala Reports Long Reads – The colour of signals 33:59
प्लेयर एफएम में आपका स्वागत है!
प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।