Artwork

TWIML and Sam Charrington द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री TWIML and Sam Charrington या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Player FM - पॉडकास्ट ऐप
Player FM ऐप के साथ ऑफ़लाइन जाएं!

Dataflow Computing for AI Inference with Kunle Olukotun - #751

57:37
 
साझा करें
 

Manage episode 513616212 series 2355587
TWIML and Sam Charrington द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री TWIML and Sam Charrington या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal

In this episode, we're joined by Kunle Olukotun, professor of electrical engineering and computer science at Stanford University and co-founder and chief technologist at Sambanova Systems, to discuss reconfigurable dataflow architectures for AI inference. Kunle explains the core idea of building computers that are dynamically configured to match the dataflow graph of an AI model, moving beyond the traditional instruction-fetch paradigm of CPUs and GPUs. We explore how this architecture is well-suited for LLM inference, reducing memory bandwidth bottlenecks and improving performance. Kunle reviews how this system also enables efficient multi-model serving and agentic workflows through its large, tiered memory and fast model-switching capabilities. Finally, we discuss his research into future dynamic reconfigurable architectures, and the use of AI agents to build compilers for new hardware.

The complete show notes for this episode can be found at https://twimlai.com/go/751.

  continue reading

777 एपिसोडस

Artwork
iconसाझा करें
 
Manage episode 513616212 series 2355587
TWIML and Sam Charrington द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री TWIML and Sam Charrington या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal

In this episode, we're joined by Kunle Olukotun, professor of electrical engineering and computer science at Stanford University and co-founder and chief technologist at Sambanova Systems, to discuss reconfigurable dataflow architectures for AI inference. Kunle explains the core idea of building computers that are dynamically configured to match the dataflow graph of an AI model, moving beyond the traditional instruction-fetch paradigm of CPUs and GPUs. We explore how this architecture is well-suited for LLM inference, reducing memory bandwidth bottlenecks and improving performance. Kunle reviews how this system also enables efficient multi-model serving and agentic workflows through its large, tiered memory and fast model-switching capabilities. Finally, we discuss his research into future dynamic reconfigurable architectures, and the use of AI agents to build compilers for new hardware.

The complete show notes for this episode can be found at https://twimlai.com/go/751.

  continue reading

777 एपिसोडस

सभी एपिसोड

×
 
Loading …

प्लेयर एफएम में आपका स्वागत है!

प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।

 

त्वरित संदर्भ मार्गदर्शिका

अन्वेषण करते समय इस शो को सुनें
प्ले