Artwork

Ludwig-Maximilians-Universität München and MCMP Team द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Ludwig-Maximilians-Universität München and MCMP Team या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Player FM - पॉडकास्ट ऐप
Player FM ऐप के साथ ऑफ़लाइन जाएं!

Remarks on the foundations of mathematics

1:31:37
 
साझा करें
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117473 series 2929680
Ludwig-Maximilians-Universität München and MCMP Team द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Ludwig-Maximilians-Universität München and MCMP Team या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Helmut Schwichtenberg (LMU) gives a talk at the MCMP Colloquium (5 December, 2013) titled "Remarks on the foundations of mathematics". Abstract: We consider minimal logic with implication and universal quantification over (typed) object variables. Free type and predicate parameters may occur. For mathematics we need (i) data (the Scott - Ershov partial continuous functionals) and (ii) predicates (defined inductively or coinductively). In this setting we can define (Leibniz) equality, falsity and the missing logical connectives (negation, disjunction, existential quantification, conjunction). Ex-falso-quodlibet can be proved. Using Kreisel's (modified) realizability we can (even practically) extract computational content from proofs, and (internally) prove soundness.
  continue reading

22 एपिसोडस

Artwork
iconसाझा करें
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117473 series 2929680
Ludwig-Maximilians-Universität München and MCMP Team द्वारा प्रदान की गई सामग्री. एपिसोड, ग्राफिक्स और पॉडकास्ट विवरण सहित सभी पॉडकास्ट सामग्री Ludwig-Maximilians-Universität München and MCMP Team या उनके पॉडकास्ट प्लेटफ़ॉर्म पार्टनर द्वारा सीधे अपलोड और प्रदान की जाती है। यदि आपको लगता है कि कोई आपकी अनुमति के बिना आपके कॉपीराइट किए गए कार्य का उपयोग कर रहा है, तो आप यहां बताई गई प्रक्रिया का पालन कर सकते हैं https://hi.player.fm/legal
Helmut Schwichtenberg (LMU) gives a talk at the MCMP Colloquium (5 December, 2013) titled "Remarks on the foundations of mathematics". Abstract: We consider minimal logic with implication and universal quantification over (typed) object variables. Free type and predicate parameters may occur. For mathematics we need (i) data (the Scott - Ershov partial continuous functionals) and (ii) predicates (defined inductively or coinductively). In this setting we can define (Leibniz) equality, falsity and the missing logical connectives (negation, disjunction, existential quantification, conjunction). Ex-falso-quodlibet can be proved. Using Kreisel's (modified) realizability we can (even practically) extract computational content from proofs, and (internally) prove soundness.
  continue reading

22 एपिसोडस

सभी एपिसोड

×
 
Loading …

प्लेयर एफएम में आपका स्वागत है!

प्लेयर एफएम वेब को स्कैन कर रहा है उच्च गुणवत्ता वाले पॉडकास्ट आप के आनंद लेंने के लिए अभी। यह सबसे अच्छा पॉडकास्ट एप्प है और यह Android, iPhone और वेब पर काम करता है। उपकरणों में सदस्यता को सिंक करने के लिए साइनअप करें।

 

त्वरित संदर्भ मार्गदर्शिका